
A Quantum Theory of Speciation

Kerry M. Soileau

January 14, 2012

Abstract

We propose a theoretical model of quantum speciation among
elements of a finite dimensional Hilbert space. The potential for
species diversity and the current environment are represented by linear
operators satisfying a compatibility criterion. A method for calculating
probabilities of production of individuals is defined.
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1 Introduction

Let H be a Hilbert space H with inner product 〈·, ·〉 and finite dimension

n. We say that the ordered pair (A,B) is compatible if A and B are

linear operators on H, B is Hermitian and the composition AB has all real

eigenvalues and a unique largest eigenvalue. By CH we mean the collection

of compatible ordered pairs.

Fix (E, S) ∈ CH . Let the environment be represented by E, and the

species by S. The interaction of the species with the environment is represented

by the linear operator R = ES. Let the unit eigenvectors of S be denoted by

V (S) = {s1, s2, s3, · · · , sn}. This set represents the “individuals” genetically
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possible for the species represented by S. Note that V (S) forms an orthonormal

basis for H. Let the unit eigenvectors of R be denoted by V (R), and

let r ∈ V (R) be the eigenvector with largest eigenvalue. The probability

of production of the individual si is defined to be |〈r, si〉|2 for each i =

1, 2, 3, · · · , n.

EXAMPLE

Take the Hilbert space to be R8 with the usual topology and inner

product. Let the environment be represented by the matrix

E =



0.58 0.38 −0.49 0.45 −0.87 0.53 0.58 0.61

0.38 0.25 −0.32 0.29 −0.57 0.34 0.38 0.40

−0.49 −0.32 3.01 −0.38 −1.39 −0.45 −0.49 −0.52

0.45 0.29 −0.38 0.35 −0.68 0.41 0.45 0.48

−0.87 −0.57 −1.39 −0.68 3.07 −0.79 −0.87 −0.92

0.53 0.34 −0.45 0.41 −0.79 0.48 0.52 0.56

0.58 0.38 −0.49 0.45 −0.87 0.52 0.57 0.61

0.61 0.40 −0.52 0.48 −0.92 0.56 0.61 0.65


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and let the species be represented by the matrix

S =



4.62 −0.33 −0.95 −0.41 −0.37 −0.21 −1.33 0.06

−0.33 7.96 −0.10 −0.04 −0.04 −0.02 −0.13 0.00

−0.95 −0.1 6.10 0.43 0.78 −0.28 −0.72 0.04

−0.41 −0.04 0.43 5.32 0.12 −0.11 −0.91 −0.16

−0.37 −0.04 0.78 0.12 2.96 0.24 0.61 0.08

−0.21 −0.02 −0.28 −0.11 0.24 3.62 −0.01 0.93

−1.33 −0.13 −0.72 −0.91 0.61 −0.01 4.03 −0.12

0.06 0.00 0.04 −0.16 0.08 0.93 −0.12 1.35


The interaction of the species with the environment is given by the matrix

R ≡ ES =



2.31 2.81 −4.61 1.14 −2.60 2.23 0.85 1.12

1.52 1.85 −3.01 0.72 −1.71 1.44 0.56 0.73

−3.63 −2.54 18.07 −0.10 −2.07 −3.13 −3.89 −1.02

1.80 2.14 −3.57 0.89 −2.03 1.73 0.66 0.88

−2.10 −4.08 −4.68 −2.44 7.47 −2.31 1.34 −1.63

2.13 2.51 −4.21 1.05 −2.37 2.03 0.74 1.02

2.33 2.81 −4.59 1.15 −2.61 2.19 0.81 1.11

2.43 2.96 −4.87 1.23 −2.75 2.36 0.89 1.19


The eigenvalues of the matrix R are given by

λ (R) = {22.529, 12.075, 0.059,−0.049,−0.028, 0.024, 0.008, 0.003}
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The eigenvectors of the matrix R are given by

V (R) = {(−0.26,−0.17, 0.81,−0.20,−0.09,−0.24,−0.26,−0.27),

(−0.25,−0.16,−0.28,−0.19, 0.78,−0.23,−0.25,−0.26),

(0.09, 0.60, 0.04,−0.39,−0.04,−0.54, 0.27,−0.34),

(−0.25,−0.08, 0.17,−0.18,−0.08, 0.45, 0.81,−0.07),

(−0.34, 0.30,−0.01, 0.38, 0.20, 0.40,−0.17,−0.65),

(0.59, 0.18, 0.31,−0.07, 0.58, 0.38, 0.09, 0.18),

(0.08,−0.05,−0.02,−0.23,−0.13, 0.40,−0.16,−0.86),

(−0.43, 0.12,−0.13,−0.39,−0.01, 0.09,−0.49, 0.62)}

(1.1)

The eigenvector of R with largest eigenvalue is

(-0.26, -0.17, 0.81, -0.20, -0.09, -0.24, -0.26, -0.27) .

The eigenvectors of the matrix S are given by
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V (S) = {(0.10,−1.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00),

(0.35, 0.03,−0.83,−0.38,−0.18, 0.05, 0.12, 0.01),

(−0.56,−0.05, 0.04,−0.48, 0.20, 0.09, 0.64, 0.01),

(0.40, 0.04, 0.48,−0.74,−0.01,−0.08,−0.22, 0.03),

(0.02, 0.00, 0.02,−0.01, 0.14, 0.92,−0.17, 0.34),

(−0.49,−0.05, 0.00,−0.17,−0.78, 0.06,−0.33, 0.02),

(0.39, 0.04, 0.29, 0.21,−0.55, 0.17, 0.62, 0.06),

(−0.03, 0.00,−0.03, 0.03, 0.00,−0.34, 0.02, 0.94)}

(1.2)

The probabilities of production are as shown in the Table below:

2 Motivation

In quantum mechanics, observables are represented by self-adjoint operators

on a Hilbert space. Thus in proposing a model of quantum speciation, it is

natural to regard a species as a whole as some self-adjoint operator S. In the

quantum mechanical setting, each possible measurement of an observable

corresponds to a unit eigenvector and eigenvalue of this operator, so by

analogy we regard each unit eigenvector of the species linear operator S

to represent a possible individual. We postulate that each species will have

only finitely many possible individuals, thus we assume that S, and also
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Individual Production
Probability

(.095, -.995, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) .021240

(-0.346, -0.033, 0.827, 0.382, 0.182, -0.048, -0.122, -0.010) .510263

(0.558, 0.053, -0.040, 0.473, -0.196, -0.089, -0.643, -0.014) .005740

(0.398, 0.038, 0.478, -0.746, -0.007, -0.077, -0.218, 0.032) .244557

(0.030, 0.003, 0.016, -0.008, 0.152, 0.914, -0.161, 0.338) .077054

(-0.500, -0.048, -0.006, -0.174, -0.772, 0.075, -0.340, 0.021) .091183

(-0.387, -0.037, -0.292, -0.206, 0.556, -0.162, -0.618, -0.063) .006876

(-0.034, -0.003, -0.033, 0.030, -0.000, -0.341, 0.021, 0.938) .043087
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the Hilbert space, have finite dimension. Thus S is in fact Hermitian. We

may then regard the eigenvalues of each unit eigenvector (i.e. individual) of

S as representing the reproductive strength of that individual. We model

the influence of the environment by means of a linear operator E which is

composed with S to produce the resultant operator R = ES. We require

that (E, S) be compatible, in the sense defined above, so that R will have all

real eigenvalues and a unique largest eigenvalue.

The definition of probability of production was motivated by the following

observation. If ~ϕ is a random vector in Rn, how may we determine the unit

vector v̂ ∈ Rn which maximizes the expectation value E (~ϕ · v̂)2? It’s not

difficult to show that this is accomplished by taking v̂ to be an eigenvector

with maximal eigenvalue of the matrix



Eϕ1ϕ1 Eϕ1ϕ2 · · · Eϕ1ϕn

Eϕ2ϕ1 Eϕ2ϕ2 · · · Eϕ2ϕn

...
...

. . .
...

Eϕnϕ1 Eϕnϕ2 . . . Eϕnϕn


.

The maximal value of E (~ϕ · v̂)2 is then equal to this eigenvalue. Thus in the
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case that there exists a random vector ~ϕ such that

R =



Eϕ1ϕ1 Eϕ1ϕ2 · · · Eϕ1ϕn

Eϕ2ϕ1 Eϕ2ϕ2 · · · Eϕ2ϕn

...
...

. . .
...

Eϕnϕ1 Eϕnϕ2 . . . Eϕnϕn


,

then E (~ϕ · v̂)2 is maximized for v̂ = v̂max, where v̂max is the largest

eigenvalue of R. We may express v̂max as a unique linear combination of

the eigenvectors (individuals) of S, like so: v̂max =
N∑
i=1

(v̂max · ŝi)ŝi. Again

following the pattern seen in the quantum mechanical setting, we define the

probability of “observing”, i.e. producing the individual represented by ŝi

as |〈v̂max, ŝi〉|2 = (v̂max · ŝi)2. Although the motivation involves Hermitian

operators R, this is not assumed in the definition of compatible operators.
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